扫码下载APP
及时接收最新考试资讯及
备考信息
多项选择题
◎有一笔递延年金,前两年没有现金流入,后四年每年年初流入100万元,折现率为10%,则关于其现值的计算表达式正确的有( )。
A.100×(P/F,10%,2)+100×(P/F,10%,3)+100×(P/F,10%,4)+100×(P/F,10%,5)
B.100×[(P/A,10%,6)-(P/A,10%,2)]
C.100×[(P/A,10%,3)+1]×(P/F,10%,2)
D.100×[(F/A,10%,5)-1]×(P/F,10%,6)
正确答案:ACD
答案解析:本题中从第3年初开始每年有100万元流入,直到第6年初。
选项A的表达式是根据“递延年金现值=各项流入的复利现值之和”得出的,“100×(P/F,10%,2)”表示的是第3年初的100的复利现值,“100×(P/F,10%,3)”表示的是第4年初的100的复利现值,“100×(P/F,10%,4)” 表示的是第5年初的100的复利现值,“100×(P/F,10%,5)”表示的是第6年初的100的复利现值。
选项B是想按照教材中介绍的第二种方法计算,其中的n表示的是等额收付的次数,即A的个数,本题中共计有4个100,因此,n=4;但是注意,第1笔流入发生在第3年初,相当于第2年末,而如果是普通年金则第1笔流入发生在第1年末,所以,本题的递延期m=2-1=1,因此,m+n=1+4=5,所以,选项B的正确表达式应该是100×[(P/A,10%,5)-(P/A,10%,1)].
选项C和选项D是把这4笔现金流入当作预付年金考虑的,100×[(P/A,10%,3)+1]表示的是即付年金现值,表示的是第3年初的现值,因此,计算递延年金现值(即第1年初的现值)时还应该再折现2期,所以,选项C的表达式正确;100×[(F/A,10%,5)-1]表示的是即付年金的终值,即第6年末的终值,因此,计算递延年金现值(即第1年初的现值)时还应该再复利折现6期,即选项D的表达式正确。
Copyright © 2000 - www.chinaacc.com All Rights Reserved. 北京正保会计科技有限公司 版权所有
京B2-20200959 京ICP备20012371号-7 出版物经营许可证 京公网安备 11010802044457号